Azure Functionsの主な機能と特長
Azure Functions概要
Azure Functionsは、サーバーレスなイベント駆動型のFaaS（Functions as a Service）プラットフォームです。開発者はクラウド上に関数コードをデプロイするだけで、インフラ管理を意識せずにアプリケーションを実行できます[1]。関数は必要に応じて自動的に実行され、使われないときはリソースが解放されるため、従量課金によるコスト効率と高いスケーラビリティを実現します[1]。Azure Functionsはイベントに応じて自動でスケールし、開発者は主要なロジックの実装に集中できる環境を提供します。
想定ユースケースと用途
Azure Functionsはさまざまなシナリオで活用できます。特にイベント駆動の処理やバックエンドサービスとして有用で、以下のようなユースケースが代表的です[2][3]：
· ファイル処理やデータ変換：Azure Blob Storageにファイルがアップロードされた際に関数をトリガーし、画像やデータの加工・保存を行う（例：商品カタログファイルのアップロードを検知して内容を検証・変換する）[2]。
· リアルタイムデータ処理：IoTデバイスやアプリケーションから送信されるイベントストリームを取り込み、必要な変換を加えてデータベース（Cosmos DB等）に保存したり、SignalRでリアルタイムにクライアントに配信する[2]。
· AIインテグレーション：キューに溜められたテキストデータを関数で取り出し、認識・分析のためにAIサービス（認知サービス等）に渡して結果を処理する[4]。
· スケジュール実行（バッチ処理）：タイマー機能を使い、定期的（例：毎日深夜など）に関数を実行してデータクレンジングやバックアップ処理を行う[5]。
· サーバーレスAPI：HTTP要求をトリガーとしてRESTful APIエンドポイントを構築し、Webやモバイルアプリのバックエンドとして機能させる[3]。
· ワークフロー・オーケストレーション：Durable Functionsを用いて複数の関数を連携させ、状態を持つワークフローやバッチ処理パイプラインを構築する（例：複数サービスへの注文処理を順序だてて実行）[3]。
· データ変更イベント対応：データベースにおけるドキュメント追加・更新イベント（Azure Cosmos DBの変更フィードなど）をトリガーにしてビジネスロジックを実行する[6]。
· メッセージキュー処理：Azure Queue StorageやService Busキュー、イベントハブに蓄積されたメッセージを関数で並行処理し、非同期タスク処理やシステム間連携を行う[7]。
上記のように、Azure Functionsはファイルストレージ、メッセージング、タイマー、イベントストリーム、データベース等、様々なイベント源と連携したサーバーレス処理に適しています[2]。小規模なマイクロサービスから複雑なデータ処理パイプラインまで、必要なときに必要なコードを実行するための柔軟な基盤を提供します。
技術的な特長（トリガー、バインディング、対応言語など）
Azure Functionsの技術的特徴として、トリガー & バインディングの仕組みと、多様な開発言語サポートが挙げられます。
· トリガー (Trigger): トリガーとは「関数を実行するきっかけ」となるイベントです。各関数は必ず1つのトリガーを持ち、たとえば「HTTPリクエストが来たとき」「タイマーが一定時間ごとに発火したとき」「キューにメッセージが追加されたとき」など、トリガーとして定義されたイベント発生時に関数が起動します[8]。トリガーは発火時にデータを関数に渡すこともでき、関数の引数としてイベントの内容（例：キューメッセージの内容やHTTPリクエストのボディなど）がそのまま受け取れます[8]。
· バインディング (Binding): バインディングは関数と外部リソース（ストレージやデータベース、メッセージングサービスなど）を宣言的に接続する仕組みです。入力バインディングは外部からデータを読み込んで関数に渡し、出力バインディングは関数の実行結果を外部サービスへ書き出します[9]。コード内で煩雑なサービス接続処理を書かなくても、設定によって例えば「Azure StorageのBlobコンテンツを関数の入力に渡す」「関数の戻り値でCosmos DBにドキュメントを書き込む」といった連携が可能になります[10]。トリガー自体も特殊な入力バインディングの一種とみなされ、トリガー＋複数の入出力バインディングを組み合わせることで、最小限のコードで他のAzureサービスとデータ連携ができます[9][10]。例えば「HTTP要求で関数を起動し、関数内でCosmos DBからドキュメントを読み（入力バインディング）、処理結果をキューに送信する（出力バインディング）」といった構成も設定ファイルやアノテーションで簡潔に実現できます[11]。
· 豊富なトリガー種別: Azure Functionsは数百種類に及ぶイベントソースをトリガーに利用できると言われるほど、Azure全体のサービスと統合されています[12]。代表的なものに、HTTP要求によるHTTPトリガー、Cron表記で定期実行するタイマートリガー[13]、Azure StorageのBlobストレージトリガー（Blobへのアップロード/変更）、Queueトリガー（キューへのメッセージ追加）、Service Busのキュートリガー/トピックトリガー、イベント配信サービスであるEvent Gridトリガー、ビッグデータインジェスト用のEvent Hubsトリガー、データベース更新に反応するCosmos DBトリガーなどがあります[14]。これらにより、ファイルアップロード、メッセージ受信、IoTテレメトリ、データ更新などあらゆるイベントで関数を発火させることができます。
· 開発言語サポート: Azure Functionsは主要なプログラミング言語を幅広くサポートしています。ネイティブにサポートされる言語としてC#（およびF#など. NET言語）、JavaScript/TypeScript（Node.js）、Python、Java、PowerShellなどがあり[15]、開発者は馴染みの言語で関数を実装できます。たとえばC#/.NETやJavaではクラスライブラリプロジェクトとして関数を記述し、JavaScript/TypeScriptやPythonではスクリプト的に関数を書くことができます。また、Azure Functionsにはカスタムハンドラの仕組みがあり、サポート外の言語（例えばGo言語やRustなど）でもHTTPベースでトリガー処理を受け取るアプリケーションを実装して関数としてホスト可能です[15]。実際、2025年時点ではGo言語の関数やRust製バイナリをカスタムハンドラ経由で実行するケースも増えており[16]、コンテナ化と組み合わせることで事実上あらゆる言語でAzure Functionsを利用できます。開発ツールの統合も進んでおり、Visual StudioやVisual Studio Code、Azure Functions Core Tools、Mavenなどでプロジェクトの作成・デプロイ・デバッグがシームレスに行えます[17]。
以上のように、Azure Functionsは少ないコードで他サービスと連携できる柔軟なプログラミングモデルと、多彩な言語・ツールサポートによって、開発者の生産性を高めることができます。
スケーリングとパフォーマンスの特性（コールドスタート等）
Azure Functionsは需要に応じて自動的にスケールし、高いパフォーマンスを発揮するよう設計されています。その一方で、サーバーレス特有のコールドスタートやプランごとの挙動について理解しておく必要があります。
· ホスティングプランとスケーリング: Azure Functionsには用途に応じていくつかのホスティングプランがあります。代表的なのは従量課金の消費プラン (Consumption Plan)で、このプランでは完全にサーバーレスかつイベント駆動で自動スケールします[18][19]。関数がアイドル状態ではインスタンス数が0にまで縮退し（＝課金発生なし）、負荷がかかると要求に応じて新規インスタンスが次々起動して処理を並列化します。消費プランの関数アプリは必要に応じ数百のインスタンスまでスケールアウト可能で（例：Windowsの場合最大200インスタンス、Linuxの場合最大100インスタンス）[20]、急なトラフィック増加にも自動で対応します。また2025年には新たにFlex Consumptionプランが登場し、Linux環境限定ですが最大1000インスタンスまでの高速スケーリングやより細かなスケール制御が可能になっています[21][20]。一方、プレミアムプラン (Premium Plan)では常時稼働のインスタンスを確保しつつイベント駆動でスケールするため、後述するコールドスタートを解消しつつ必要なときスケールアウトできます[22]。プレミアムプランではインスタンスのサイズ（CPUコア数・メモリ容量）を選択でき、より高性能な環境や仮想ネットワーク(VNet)接続などエンタープライズ向け機能を利用できます[23][24]。さらに専用プラン（App Serviceプラン）で関数を動かすことも可能で、この場合は従来のApp Service同様に手動または自動スケールを設定し、常駐インスタンス上で関数が動く形になります[25]。専用プランやPremiumプランではインスタンスが常に起動しているため、オンプレミスのサーバーのように安定した性能が得られ、Azure Functionsを独自のカスタムコンテナとしてデプロイすることもできます[26]。例えばDockerイメージ化した関数をAzure Container Apps上やKubernetes上（KEDA連携）で実行することで、クラウド外やエッジ環境での利用も可能です[26]。
· コールドスタート: コールドスタートとは、関数のインスタンスがスケール0の状態から新規起動する際に発生する遅延のことです。消費プランでは関数がアイドル状態だと一定時間後にインスタンスが解放されるため、次のリクエストが来た際にホストとランタイムの起動時間が余計にかかります[27]。典型的なコールドスタートの遅延は関数の言語や内容にもよりますが、1～10秒程度と言われています（場合によっては稀に30秒近くかかることもあります）[28]。例えば. NETやNode.jsの関数であれば数秒以内が多い一方、PowerShellや依存ライブラリの多い関数は初回起動にやや時間がかかる傾向があります[28]。Azure Functionsではこのコールドスタートを少しでも緩和するため、プレースホルダ（事前ウォーム）インスタンスをプールしておき、リクエスト到着時にそれを割り当てる工夫も行われています[27]（完全には無くせないものの、全くのゼロから起動するより速く応答できるようにする仕組みです）。それでもリアルタイム性が重要なシナリオではコールドスタートが問題となり得るため、Premiumプランではあらかじめ常駐インスタンスを確保（Always Ready）して遅延を解消できます[22]。PremiumプランやDedicatedプランで常時1台以上のインスタンスをウォーム状態に保持しておけば、最初のリクエストでも遅延なく即時に処理が始まります[29]。Flex Consumptionプランでも必要に応じAlways Readyインスタンスを設定でき、コールドスタートをほぼゼロに抑えられるとされています[22]。利用シナリオに応じてこうしたプランを選択することで、UXに影響するコールドスタート問題を回避できます[30][31]。
· パフォーマンスと同時実行: Azure Functionsは各インスタンスあたり1.5GBメモリ & 1仮想CPU相当（消費プランの場合）のリソースが割り当てられます[32]。AWS Lambdaでは関数ごとにメモリサイズ（128MB～10GB）を指定しその量に応じてCPU性能も比例配分されますが、Azure消費プランはサイズ固定（標準的なVM相当）で自動スケールする設計です[32]。加えてAzure Functionsの消費プランでは、1つのインスタンス上で複数の関数呼び出しを並行処理することがあります[33]。例えばNode.jsやPythonの関数で非同期処理が多い場合、アイドル時間を活用して同一VM上で他のリクエストを処理することで効率を上げています[33]。この仕組みによりスループットが向上し、同時実行数が増えても最小のインスタンス数で捌けるメリットがあります[33]。しかし、CPUやメモリを大量に消費する関数が同じインスタンス上で並行実行されるとリソース競合が起き、各実行の処理時間が延びる可能性があります[33]。一方のAWS Lambdaでは1つの関数実行あたり専用のコンテナ/インスタンスが割り当てられ、他の実行とはリソースを共有しません[34]。そのためAWSでは性能が安定しやすい代わりに、アイドルリソースが生じても解放されずコストに反映される可能性があります。Azure FunctionsでもPremiumやDedicatedプランではインスタンスあたりの同時実行数を制限したり、十分なリソースのインスタンスサイズを選ぶことで、1実行あたりの性能安定性を高めることができます[35]。総じてAzure Functionsは自動スケールによる高負荷対応が可能で、適切なプラン選択によりコールドスタートや性能劣化を抑えつつミッションクリティカルなワークロードにも対応できる柔軟性を備えています。
他のサーバーレスサービスとの比較（特にAWS Lambda）
Azure Functionsとよく比較されるサービスに、AWSのAWS Lambdaがあります。それぞれ同じサーバーレスFaaSモデルですが、いくつかアプローチや特徴に違いがあります。
· トリガーと統合の違い: AWS LambdaでもS3へのファイルアップロードやDynamoDBの更新、SNS/SQSメッセージなど様々なイベントで関数を実行できます。しかし、Azure Functionsのトリガーとバインディングのモデルは、宣言的に他サービスとデータ連携できる点で特徴的です[11]。AWS Lambdaでは関数にイベント内容（JSON）が入力として渡され、外部サービスへの書き込みはAWS SDK等を使ってコード内で行います。一方、Azureでは例えば「関数が返した値をStorage Queueに出力バインドで自動追加する」といった設定ができ、開発者が明示的にSDK呼び出しを書くことなくデータを受け渡しできます[11]。この省コード（Low-code）な統合はAzure Functionsの利点であり、Azureの他サービス（Cosmos DB、Blob Storage、Service Bus、Event Gridなど）との結合がシンプルです[12]。言い換えれば、Azureは「用意された部品を組み合わせて機能を拡張する」アプローチで、AWS Lambdaは「関数内で自由にAWS SDKを呼んで組み合わせる」アプローチと言えます。
· プログラミング言語サポート: 両者とも主要言語を広くサポートしています。AWS Lambdaは現在、Node.js、Python、Java、C# (.NET)、Go、Rubyなどを公式サポートし、カスタムランタイムで他言語も使用可能です[36]。Azure FunctionsはC# (.NET)、JavaScript/TypeScript、Python、Java、PowerShellを公式サポートし、前述のようにカスタムハンドラやコンテナでGoやRustなども利用可能です[15]。AWSがサポートするRubyはAzureでは公式サポート外ですが、逆にAzureがサポートするPowerShellはAWSではサポート言語に含まれないなど細かな違いがあります（ただしLambdaでもカスタムランタイムでPowerShell実行は可能）。総じて言語の選択肢の幅は両者とも大きく、既存の技術スタックに合わせて選定できるようになっています。
· ホスティング/実行モデルの違い: AWS Lambdaは基本的にAWSマネージドのLambda環境にデプロイして使うのみで、実行モデルが一律です[37]。コンテナイメージで関数をデプロイすることも可能ですが、それもLambdaのマネージド基盤上で動きます。対してAzure Functionsは、複数のホスティング形態（従量課金のConsumption、柔軟なスケールのPremium、App Service上のDedicated、Azure ArcやKubernetes上の自前ホスティングなど）を公式にサポートしている点で違いがあります[38][39]。例えばAzure Functionsのコードを社内のKubernetes環境でKEDAを使って実行したり、Azure StackやAzure Arcを通じてオンプレミスで稼働させることもできます。AWS Lambdaも最近では一部オンプレミス（AWS Outposts上）で動かす選択肢がありますが、Azure Functionsの方がマルチクラウド・ハイブリッド志向の柔軟性が高いと言えます[40]。
· スケーリングと性能: スケーラビリティに関しては、AWS Lambdaは非常に迅速かつ大規模にスケールしうる点が評価されています。実際、高頻度の小さいイベントが数百万並ぶIoT処理や、高並列が必要なシナリオではAWSが先行していた歴史があります[41]。Azure Functionsも改良が重ねられ、現在ではPremiumプランや新型プランによりコールドスタートが大幅に改善されLambdaと遜色ないレベルになっています[41]。ただ、超低レイテンシを要求されるような極端なケース（例えば金融分野の高速取引など）では依然としてAWSの実績が豊富との指摘もあります[41]。一方、Azure Functionsは前述のDurable Functionsによる関数間のワークフロー構築という強みがあり、複雑なビジネスロジックや状態管理を含むシナリオではAzureが優位です[42]。Lambdaで同等のことを実現するにはStep Functions等の別サービスを併用する必要がありますが、AzureではDurable Functionsというコードベースのライブラリでステートフルなサーバーレス実行が可能なため、開発者にとって統合的で柔軟なアプローチとなります[43]。
· 運用・エコシステム統合: エンタープライズ環境への統合という観点では、それぞれ自社クラウドの強みを活かしています。Azure FunctionsはAzure Active Directory認証やMicrosoft 365（Office製品）、Logic AppsといったMicrosoftエコシステムとの親和性が高く、企業内システムとの統合や権限管理が容易です[44]。例えば関数からMicrosoft Graph APIを呼び出してSharePointやTeamsと連携するといったシナリオもスムーズに実装できます。AWS LambdaはAWSの多種多様なマネージドサービス（DynamoDBやS3、Amazon AIサービスなど）との組み合わせに強みがあり、スタートアップやクラウドネイティブ開発でオールAWSで統一している場合に威力を発揮します[45]。監視・デプロイ面では、Azure FunctionsがAzure MonitorやApplication Insightsと統合されるのに対し、AWS LambdaはCloudWatchやX-Ray、およびSAMツールなどの利用が一般的です。どちらもCI/CDパイプライン構築やInfrastructure as Codeに対応しており、DevOpsの観点では同程度に整備されています。
· コストモデル: 両サービスともリクエスト数と実行時間・メモリ量に基づく従量課金です[46]。価格設定自体は非常に近似しており、例えば月100万リクエストあたり約0.20ドル、メモリ1GB・実行100msあたりの料金もAzureで$16/1億回、AWSで$16.67/1億回程度とほぼ同一です[47]。ただし課金の細部でいくつか違いがあります。AWS Lambdaはメモリサイズを指定しその分だけ課金されますが、Azure Functions消費プランでは実行中に消費したメモリの平均使用量で課金計算されるため、同一インスタンスで複数実行が重なってもメモリが共有され無駄な重複課金が発生しにくい利点があります[48]。またAWSは実行時間を100ms単位に切り上げますが、Azureは1ms単位でより細かく計測します[49]。さらにHTTPエンドポイントの公開に関して、AWSでは従来API Gateway（有料）を使う必要がありましたが、Azure Functionsは標準でHTTPトリガーによる関数公開が可能で追加コスト無しに簡易APIを構築できます[50]（※AWSも近年Lambda Function URLやALB統合などで改良し、シナリオに応じて追加コストを抑えられるようになっています[51]）。総合すると、少量の短時間実行ならAWSの細粒度課金がわずかに有利、長時間実行や複数並行実行ならAzureが効率的といった差はありますが、両者のコスト差は小さく、設計や使い方次第でほぼ同等と言えます[46]。
どちらを選ぶべきかは利用者の状況によります。AWS Lambdaはクラウドネイティブなスタートアップや大規模なイベント処理に向いており、AWSサービス群との親和性やスケールのしやすさから高トラフィック・シンプル関数に強みがあります[52][53]。一方Azure FunctionsはMicrosoft系技術を多用する企業や、複雑な業務フローをコードで実現したいケースに適しており、エンタープライズ統合や高度なワークフローで優位性を発揮します[54][55]。どちらも近年は互いの利点を取り込み進化しているため、最終的には自社のクラウド戦略や既存資産との親和性を考慮して選定するのが望ましいでしょう。
最新の動向・アップデート（2025年時点）
Azure Functionsはサービス開始以来、継続的に機能強化やアップデートが行われています。最新情報として特筆すべきものをいくつか紹介します。
· ランタイムと言語サポートの拡充: Azure Functionsのランタイムは2025年時点でバージョン4.x系となり、最新のプラットフォームに追随しています。例えば、.NET 6/7に続き.NET 10までサポートが追加され（※.NET 10は2025年時点で最新の長期サポート版）[56]、JavaもJava 21 (LTS)に加えてJava 25がプレビューサポートに入っています[57]。Node.jsもNode.js 20および22がGA（Node 24はプレビュー）で利用可能です[57]。Pythonに関してもAzure Functions 2.x以降は3.x系に対応し続け、最新のPython 3.12や3.13まで順次サポート対象となっています[58]。このようにAzure Functionsは最新の言語ランタイムを迅速にサポートし、開発者が新機能や性能改善を取り込めるようになっています。
· 新プラン: Flex Consumptionの登場: 前述したように、従来の消費プランを強化する形でFlex Consumptionプランが導入されました。FlexプランではLinux環境限定ですが、より迅速で細やかなスケールアウト（関数単位でのスケール制御）と最大1000インスタンスという大規模スケーリングが可能です[21]。またAlways Readyインスタンスを設定しておくことで事実上コールドスタートを解消できるにも関わらず、従量課金モデルを維持している点も注目されています[22]。Flex Consumptionは既存の消費プランの上位互換的な位置づけで、VNet統合などエンタープライズ機能にも対応しており、今後Azure Functionsのデフォルトプランとして主流になることが見込まれています[30]（既にLinux消費プランは将来的にFlexへ置き換え予定である旨が発表されています[59][60]）。
· パフォーマンスと運用改善: Azure Functionsチームは性能面や開発体験の改善にも注力しています。2025年にはOpenTelemetryのサポートがGA（一般提供）となり、関数から出力されるログ・メトリック・トレースをオープン標準形式でエクスポートできるようになりました[61][62]。これによりAzure Monitorだけでなく任意の監視基盤で関数の可観測性（Observability）を確保しやすくなっています。またローリングアップデートによるデプロイ機能がプレビュー公開されました[63]。従来、関数アプリのデプロイ時には全インスタンスが一斉に更新・再起動され一時的にリクエスト待ちが発生する可能性がありましたが、ローリングアップデートを有効化することでインスタンスをバッチごとに順次入れ替え、サービス停止時間ゼロのデプロイが可能になります[63][64]。これはFlexプランで提供される新機能で、大規模APIを無停止でデプロイしたい場合に有用です。さらにセキュリティとネットワーク面でも強化が図られています。Managed Identityによるシークレットレスな認証や、VNet統合・プライベートエンドポイント対応の拡充により、エンタープライズ環境での安全な関数運用がしやすくなりました[65][66]。Azure AD（Entra ID）を使った関数レベルの認可機能も備わっており、HTTP関数のエンドポイントを保護することも容易です[65]。
· Durable Functionsや新シナリオへの対応: Durable Functions（サーバーレスオーケストレーション機能）も継続的にアップデートされています。2025年時点でDurable Functionsは2.x/3.xが提供され、特に長期間実行されるワークフローの信頼性向上や分散トレーシング対応などが進みました[67][68]。さらに近年の生成AIブームを受けて、Azure FunctionsはAI・エージェント指向のワークロードにも力を入れています[67]。Ignite 2025では「Remote MCP」（Model Context Protocol）というエージェント用ツールをAzure Functions上でスケーラブルにホストする拡張が発表され、関数からAIエージェントのツールを提供するシナリオが紹介されました[67][69]。これに関連して、Azure Functions上でAIエージェントのサーバを自己ホスティングする機能や、FunctionsとAIサービスを組み合わせたリファレンス実装（Foundryエージェントとの連携）も公開されています[70][71]。これらは特殊なケースかもしれませんが、Azure Functionsが単なるFaaSを超えて最新のクラウドアプリケーションの実行基盤へと進化していることを示しています。
このようにAzure Functionsは年々プラットフォームとして成熟し、より高速に、より使いやすく、そして新しいユースケースに対応できるようアップデートが重ねられています[72]。最新の機能やベストプラクティスは公式ドキュメントやブログで随時発信されており、開発者はAzure Functionsの更新情報に注目することで、最新のクラウド技術を取り入れた開発を行うことができます[73]。
最後にまとめると、Azure Functionsはイベント駆動アーキテクチャを支える強力なサーバーレス基盤であり、豊富なトリガー/バインディングによるシンプルな統合、幅広い言語サポート、自動スケーリングによる高い可用性を備えています。他のFaaS製品との比較でも遜色なく、ユースケース次第では独自の強みを発揮します。継続的な機能拡張により、今後もAzure Functionsはクラウド開発において重要な役割を担っていくことでしょう。
Sources: Azure公式ドキュメントおよびブログ、他社比較記事等[2][9][27][41]ほか.

[1] [2] [3] [4] [5] [6] [7] [15] [17] [18] [19] [25] [26] Azure Functions overview | Microsoft Learn
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
[8] [9] [10] Triggers and Bindings in Azure Functions | Microsoft Learn
https://learn.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
[11] [23] [24] [32] [33] [34] [37] [38] [39] [43] [46] [47] [48] [49] [50] [51] AWS Lambda vs. Azure Functions: 10 Major Differences - IOD - The Content Engineers
https://iamondemand.com/blog/aws-lambda-vs-azure-functions-ten-major-differences/
[12] [16] [36] [40] [41] [42] [44] [45] [52] [53] [54] [55] Azure Functions vs AWS Lambda in 2025: Which Serverless Platform Is Best for Your Business?
https://www.nanobytetechnologies.com/Blog/Azure-Functions-vs-AWS-Lambda-in-2025-Which-Serverless-Platform-Is-Best-for-Your-Business
[13] [14] [30] [31] [35] Azure Functionsのホスティングプランが色々あってよくわからないあなたへ（2025年5月現在） - Algomatic Tech Blog
https://tech.algomatic.jp/entry/2025/05/14/180411
[20] [21] [22] [27] [29] [59] [60] Azure Functions Scale and Hosting | Microsoft Learn
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
[28] Cold Starts in Azure Functions | Mikhail Shilkov
https://mikhail.io/serverless/coldstarts/azure/
[56] [57] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] Azure Functions Ignite 2025 Update | Microsoft Community Hub
https://techcommunity.microsoft.com/blog/appsonazureblog/azure-functions-ignite-2025-update/4469815
[58] Supported Languages in Azure Functions | Microsoft Learn
https://learn.microsoft.com/en-us/azure/azure-functions/supported-languages
